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S
elf-assembly offers an economically
scalable method of synthesis of func-
tional materials via “bottom-up”manu-

facturing. Recent observations of nano-
scale surface pattern formation1,2 have
inspired multidisciplinary research into ap-
plications of these phenomena. New appli-
cations based upon these self-assembly
processes require a better understanding
of the complexdynamic pathways that affect
equilibrium pattern features and quality.
This is challenging, in that self-assembled
phase transformations are both dynamic
and multiscale, ranging from nanoscale pat-
tern features anddefects tomeso- andmacro-
scale pattern orientational/translational order.
Surface self-assembly research has been

predominantly focused on diblock copoly-
mer thin films1,2 for use in the semiconduc-
tor industry. Other material systems that
exhibit surface self-assembly are of recent
interest for novel nanofabrication applica-
tions in the semiconductor and catalysis
areas. Examples of these techniques being
researched include quantumdot formation,3

electrochemical etching,4 and submono-
layer (ML) heteroepitaxial growth.5,6 Recent
observations of pattern formation in sub-
ML films of Pb on a Cu(111) substrate5 open
up new opportunities for applications of
nanofeatured bimetallic materials. In parti-
cular, this type of self-assembly is of interest
for the development of new classes of bi-
metallic catalysts7 with precise control over
catalyst structure, and subsequent reactive
properties, via manipulations of the self-
assembly process during heteroepitaxial
growth.
The mechanism of heteroepitaxial pat-

tern formation is also interesting from a
fundamental point of view due to the
presence of “soft” (∼kBT) interactions in
materials that are typically dominated by
“hard” interactions (resulting in crystallization).
As opposed to close-packing of ordered
phases of colloids and metal crystals, this

phenomenon is driven by soft interactions
of collective domains of adsorbed Pb atoms
which interact both with attractive metallic
bonding and repulsive surface strain fields8

induced by the lattice-mismatch with the
underlying Cu(111) substrate. This combi-
nation of short-range attractive and long-
range repulsive interactions is a well-known
recipe for pattern-forming systems.9,10

In the bimetallic Pb/Cu(111) system, the
pattern-forming domains are observed to
be large submonolayer clusters of metal
atoms (Figure 1), which are expected to
exhibit novel collective and solitary diffusive
modes coupled to pattern evolution. Little is
known about the structure and dynamics of
this novel pattern formation mechanism.
Other pattern-forming systems with differ-
ent structure and interactions on the micro-
scopic level, but sharedphase-order symme-
tries, have been found to exhibit “universal”
pattern dynamics11 following an order�
disorder transition (ODT). Thus, determining
if this broad class of materials also exhibits
universality could link much past research
of other self-assembled materials to new
materials and applications, accelerating sur-
face self-assembly-based manufacturing.
Past approaches to modeling surface

pattern formation include the phase-field
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ABSTRACT Nanoscale self-assembly dynamics of submonolayer bimetallic films was studied

through simulation of a coarse-grained mesoscopic model. Simulations predict a phase transition

sequence (hexagonalfstripefinverse hexagonal) consistent with experimental observations of

Pb/Cu(111) heteroepitaxial growth. Post-transition ordering dynamics of hexagonal and inverse

hexagonal patterns was simulated and quantified in order to predict pattern quality and evolution

mechanisms. Correlation length scaling laws and nanoscale evolution mechanisms were predicted

through simulation of experimentally relevant length (≈1 μm2) and time scales, with findings

supporting evidence of universal pattern behavior with other hexagonal systems. Results provide

detailed dynamics and structure of this novel self-assembly process applicable to the design and

optimization of functional bimetallic materials, such as bimetallic catalysts.
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model of Suo and Lu.8 Linear and nonlinear analysis of
this model12 has shown good qualitative agreement
with phase equilibrium behavior in the experimental
Pb/Cu(111) system.5 In this work, recent theoretical
advances in coarse-graining of Ising-type microscopic
lattice models13 are leveraged to simulate the range of
surface patterns utilizing a single coherent theoretical
basis. This approach has been shown to allow flexibility
in including multiple microscopic processes/species14

(diffusion, adsorption/desorption, reaction) anddynamics15

(Metropolis, Arrhenius). Furthermore, through spatial

and temporal coarse-graining,13 this theoretical ap-
proach provides a framework for hierarchical multi-
scale simulation. The presently used coarse-grained
“mesoscopic” formulation enables long-time/large
length-scale simulations16 of the heteroepitaxial pat-
tern evolution dynamics while retaining most of the
physics of the underlying microscopic model.
In this work, we focus on simulation of sub-ML sur-

face coverages in the stable hexagonal and inverse
hexagonal regimes. For most applications, the desired
pattern quality involves the formation of large periodic

Figure 1. Schematics of different surface patterns observed in heteroepitaxially formed submonolayer Pb (• symbol) films on
a Cu(111) substrate, (a) hexagonal, (b) stripe, and (c) inverse hexagonal and the resulting coarse-grained mean-field
representation of each surface pattern (d�f) used in simulations.

Figure 2. (a) Sample hexagonally ordered submonolayer (c0 = 0.35 ML) film with image analysis of a subdomain shown in
(b); (b) postprocessing results showing þ/� disclination defects (red squares and blue circles, respectively), dislocations
(green arrows), and anisometric pattern features (red circles); (c) postprocessing results showing local hexagonal domain
orientation (with respect to a reference angle) and defects.
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domains with few or no defects. Simulations of large
≈1 μm2 surfaces over long times (with respect to
pattern evolution) are combined with quantitative
pattern analysis tools (developed in-house) using
bond-orientational order concepts to characterize si-
mulation domains.17,18 Pattern quality evolution, mea-
sured via correlation lengths and defect densities, is
used to determine scaling laws which are compared to
similar results for other material systems (block copo-
lymer surface self-assembly) to assess universality.
Observations from the spatial evolution of the pattern
are then presented, showing the dominant mechan-
isms for pattern evolution.

Model, Pattern Analysis, and Defects. Figure 2a shows a
sample 1 μm2 hexagonally ordered simulation domain
predicted by the mesoscopic model with surface cov-
erage of c0 = 0.35ML. Themesoscopic (diffusion)model
is described elsewhere13�15 (see Methods section). Si-
mulationswere performed at a constant dimensionless
interaction potential:

~J(T, c0) ¼ βJ0c0(1 � c0) (1)

where β = (kBT)
�1 and J0 is the interaction strength

between adatoms (see eq 3). Linear analysis of the
mesoscopic model12,19 was previously used to deter-
mine the critical J~ value below which patterns form,
which was found to depend on coverage and the dif-
ference in strength between attractive and repulsive
interactions. Simulationswere performedwith J~ = 0.0455,
which is below the critical value for pattern formation
determined in ref 19.

Simulations predict that the hexagonal phase con-
sists of interacting “islands” of microphase-separated
adsorbed atoms (Figure 1). An example domain is
shown in Figure 2a, with a magnified subdomain
(Figure 2b) identifying hexagonal defect structures
which were determined through postprocessing. Also
highlighted in Figure 2a are anisometric pattern struc-
tures in areas of increased local strain in andneardefects.
Such hexagonal domain morphology was observed in
the experimental system via low-energy electron mi-
croscopy (LEEM)5,20 for both the hexagonal and inverse
hexagonal phases.

In order to quantify the pattern quality, hexagonal
islands were identified via image processing. To take
into account the existence of anisometric hexagonal
islands, a characteristic length of the pattern features
λc was computed using the dominant Fourier mode of
the coverage.16,18 Hexagonal islands with a major axis
greater than 150% of λc were treated as two separate
hexagonal islands. The centers of these two islands
correspond to the focii of an ellipse best-fit to the ori-
ginal hexagonal island. Bond-orientational order theory21

was then used to determine local orientational order of
the hexagonal domains.18,22,23 Hexagonal defects were
identified by counting nearest neighbors determined

through Delaunay triangulation. Orientational defects,
disclinations, involve a rotation of the domain by(π/3.
These defects are identified by hexagonal featureswith
five (þ disclination) or seven (� disclination) nearest
neighbors. Translational defects, dislocations, involve a
creation or annihilation of a hexagonal row. These
defects are identified as pairs of adjacent oppositely
charged disclinations. Thus, only “free” disclinations
are identified, which have no oppositely charged
neighbors. Figure 2b shows both disclinations (points)
and dislocations (vectors/arrows) in the highlighted
subdomain.

In simulations of the stable hexagonal regime,
disclination defects are predominantly found to be
attached to hexagonal grain boundaries which are
composed of strings of dislocations. Grain boundaries
are clearly visible, but further postprocessing is needed
to clearly identify grain orientation and interfaces.
Figure 2c shows the resulting hexagonal orientation
field θ(x,y) determined using the line segment orienta-
tion between nearest hexagonal neighbors. Through
visual representation of the hexagonal (and inverse
hexagonal) domains, tracking the evolution of hexa-
gonal grains and resulting defect interactions is feasi-
ble. Consistent with past simulations of hexagonal
phases inblockcopolymer (BCP) surfaceself-assembly,18,23

two types of grain boundaries (GBs) are observed:
small- and large-angle (SAGB and LAGB). They are
distinguished by the degree of change in hexagonal
orientation across them. SAGBs impart a small or
gradual change in hexagonal orientation, shown as a
gradual color gradient in Figure 2c. LAGBs impart a
large change in orientation, which is shown as a sharp
interface, typically bisected by a string of dislocation
defects (arrows shown in Figure 2c).

A sample subdomain of the inverse hexagonal
phase (c0 = 0.75 ML) is shown in Figure 3a with defects
identified using the same convention as the hexagonal
phase. The inverse hexagonal phase consists of a
matrix of microphase-separated adsorbed atoms with
voids or “holes” composing the hexagonal pattern
(Figure 1c). As opposed to observations in BCP surface
self-assembly, in the bimetallic system, the inverse
hexagonal phase is not the symmetric opposite of
the hexagonal phase. Thus the evolution of the hex-
agonal and inverse hexagonal patterns through
the translation of islands/holes involves very dif-
ferent diffusion mechanisms, which will be quantified
through the evolution of the overall pattern order/
quality. Few past simulations have captured inverse
hexagonal phase ordering, and these simulations, to
our knowledge, present the first results of quantitative
pattern dynamics for this phase.

The inverse hexagonal pattern is also observed to
have strain-induced variation in individual hexagonal
features. This is mainly localized to regions around
disclination defects, and large aspect ratio features are
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not observed prevalently as with the hexagonal phase.
Again, disclination defects are observed to be predo-
minantly associated with grain boundaries. Figure 3b
shows the computed bond-orientation field for the
inverse hexagonal domain where both SAGBs and
LAGBs are also observed.

Pattern Quality Evolution and Scaling Laws. In order to
quantitatively determine how the quality of the pat-
tern evolves following the ODT, pattern evolution was
characterized through the orientational correlation
function:18

ξ6(r, t) ¼ Æe6i[θ(rþr0, t) � θ(r0, t)]æ (2)

where θ is the local hexagonal orientation. The orien-
tational correlation length was determined by fitting
ξ6(r,t) to an exponential function exp(�r/λ0).

18 Long-
time simulations were performed on large periodic
domains of 1 μm2 and post-ODT pattern evolution ana-
lyzed for dynamic scaling behavior. Two sets of simula-
tions were performed using different approximations for

the adsorbate mobility corresponding to different
diffusion dynamics: Metropolis and Arrhenius.15 Me-
tropolis dynamics approximates the local mobility
as μ[c] = De�U0βc(1 � c), and the barrier for diffusion
is constant. Arrhenius dynamics takes into account
the local potential energy barrier to diffusion μ[c] =
De�U(x,y)βc(1 � c). Simulation sets were performed for
both patterns (hexagonal and inverse hexagonal) and
dynamics (Metropolis and Arrhenius) using identical
(within the set) disordered initial conditions (see the
Methods section).

Figure 4 shows sample postprocessing results of the
correlation length evolution in the stable hexagonal
(Figure 2a) and inverse hexagonal (Figure 3a) regimes.
Power law best-fits with time, �tn, were computed for
each simulation and are shown in Table 1. In addition
to the directly computed correlation lengths λ0, ap-
proximate characteristic lengths were determined
using disclination (FDS) anddislocation (FDL) densities.22

These approximate length scales correspond to the

Figure 3. Sample inverse hexagonal ordered submonolayer (c0 = 0.75 ML) film from image analysis of a subdomain with
(a) þ/� disclination defects (red squares and blue circles, respectively) and dislocations (green arrows) shown; (b) local
hexagonal domain orientation with defects.

Figure 4. Orientational correlation length λ0 and defect densities, λDS = FDS�1/2 and λDL = (pFDL)�1, versus simulation time for
bothMetropolis andArrhenius diffusions dynamics for the (a) disorderedfhexagonal and (b) disorderedfinverse hexagonal
transitions. Best fit exponents tn for both hexagonal and inverse hexagonal patterns with both Metropolis (b) and Arrhenius
(�) dynamics (Table 1) are approximately λ0 � t1/4, λDS � t1/5, and λDL � t1/5.
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average distance between disclinations λDS = FDS�1/2 and
the average grain size λDL = (pFDL)�1, where p is the
average distance between dislocations in a grain
boundary.22 Comparison between directly computed
orientational correlation length λ0 and approximate
characteristic lengths using defect densities provides
insight into the pattern evolution process. For example,
for striped BCP surface self-assembly, it was shown that
the interaction of disclination defects drives the order-
ing process through an equivalence of the scaling of λ0
and λDS.

1,24,25

These results support three major observations.
First, they predict that heteroepitaxial pattern forma-
tion does exhibit universal behavior where the pattern
evolution dynamics agrees with other hexagonal
surface-pattern-forming systems (BCP surface self-
assembly).22,23 Second, the pattern dynamics of the
inverse hexagonal phase is identical to that of the
hexagonal phase, in spite of the previously mentioned
difference in the microscopic structure. Third, diffusion
dynamics does not affect the scaling behavior of the
pattern dynamics.

Past experimental22 and simulation23 studies of
(spherical) BCP surface self-assembly have shown that
BCP self-assembly exhibits essentially two-dimensional
hexagonal order. These past studies, using similar
hexagonal order postprocessing techniques, have
found that the dynamics of the surface pattern evolu-
tion evolves in time with power law dependences of
λ0 ≈ t1/4, λDS ≈ t1/5, and λDL ≈ t1/5. The present results
show that the heteroepitaxial hexagonal surface pat-
terns show universal behavior in agreement with ob-
servations of the BCP hexagonal phases. Since dif-
fusion dynamics is found to have no effect on the
growth kinetics of either phase, the present results
further support that phase-order symmetries are the
sole indicator of pattern dynamics scaling.

For the inverse hexagonal transition, there is no
past experimental or simulation data with which to
compare pattern dynamics as these results are the first
(to our knowledge). This phase is observed to have
identical scaling behavior, albeit over longer time
scales. These slower dynamics, at identical reduced
temperature, are possibly related to the larger diffusive
flux of atoms required for the hexagonal holes tomove,
displacing the adsorbed phase. In contrast to the hexa-
gonal phase, which involves the translation of hexa-
gonal “islands” in a particle-depleted matrix phase,

inverse hexagonal coarsening involves the translation
of hexagonal holes in a particle-rich matrix phase,
which is less energetically favored.

Hexagonal Pattern Evolution Mechanisms. Upon the basis
of the above results, simulations of the heteroepitaxial
system should yield pattern evolution mechanisms
comparable to past results from BCP surface self-
assembly. Past experimental22 and theoretical23 ob-
servations of a two-dimensional hexagonal phase re-
vealed that the main mechanism for pattern evolution
was the “zipping-up” of a single small hexagonal grain
entrained between two larger hexagonal grains. This
mechanism was also observed in the present simula-
tions of the heteroepitaxial system, with an example
depicted in Figure 5. As shown in the example, this
process involves the motion of two “forks” in the grain
boundary that separate the larger two hexagonal
grains. These two forks contain the smaller grain which
shrinks as the forks approach each other. Each fork has
an oppositely charged hexagonal disclination in its
vicinity, such that this motion brings them together
and is concluded by the annihilation of the pair. In the
current simulations shown in Figure 5, this mechanism
was found to actively involve only one of the large
grains (grain C) with the smaller grain (grain B), while
the neighboring large grain (grain A) remains locally
static in size. This lack of participation of one of the
neighboring grains was consistently observed in dif-
ferent simulations.

The previously observed mechanism was found to
occur once hexagonal grain sizes were sufficiently
large, that is, typically with a length scale of an order
of magnitude greater than characteristic length scale
(λc ≈ 9 nm from simulations). Preceding and also
during this regime of pattern coarsening, a more com-
plex set of mechanisms is observed whereby hexago-
nal grains grow through “ripening” of earlier-stage
hexagonal domains with poorly defined grain bound-
aries (see Figure 2c and Figure 3b). Such poorly de-
fined, or diffuse, grain boundaries within a single grain
or between multiple grains were also observed in past
studies.22,23 These newly found mechanisms typically
resulted in the refinement of a single hexagonal grain
into a larger one with more well-defined GBs.

Growth via ripening was observed to occur in two
general variations with diffuse GB areas either en-
trained within a large hexagonal grain (Figure 5)
or on its edge (Figure 6). Evolution of the internal
and edge types of grain refinement are shown in
Figure 5a�c and Figure 6a�c, respectively. Once this
process initiates, it occurs solely through the motion
and annihilation of dislocations within the diffuse
boundary. Figure 5a�c shows the internal-type growth
via ripening where an entrained misoriented subgrain
shrinks through the collapse of a GB loop via disloca-
tion annihilation events. Figure 6a�c shows the edge-
type mechanism, where dislocations coalesce in a

TABLE 1. Power Law Best-Fit Results

stable pattern diffusion dynamics λ0 λDS = FDS
�1/2 λDL = (pFDL)

�1

hexagonal Metropolis 0.25 0.20 0.23
hexagonal Arrhenius 0.27 0.20 0.18
inverse hexagonal Metropolis 0.24 0.21 0.20
inverse hexagonal Arrhenius 0.26 0.21 0.23
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poorly ordered region. This coalescence results in the
transition from diffuse to clearly defined GBs. This
mechanism is similar to the zipping-up process ob-
served in hexagonal BCP phases, where here a single
larger hexagonal grain exists instead of two neighbors.

While disclinations serve to stabilize GBs following
ripening and splitting events, the annihilation of oppo-
sitely charged disclination pairs was also observed to
initiate the majority of the evolution mechanisms
observed. As pairs of disclinations annihilate, the hex-
agonal domain relaxes locally, enabling the translation
of neighboring defects and GBs.

SUMMARY

In summary, novel surface self-assembly of hetero-
epitaxially formed bimetallic thin films was simulated
using a coarse-grained “mesoscopic”model. This com-
putational approach was found to qualitatively agree
with experimental LEEM images of Pb/Cu(111) hetero-
epitaxial pattern formation including phase transition
sequence andmorphology. Pattern evolution of stable
hexagonal and inverse hexagonal phase-ordered re-
gimes were simulated. We found that these phases

exhibit universal dynamics independent of micro-
scopicmorphology (hexagonal versus inverse hexagonal)
and surface diffusion dynamics (locally constant versus
locally varying mobility). These results provide further
support for the existence of universal pattern dynamics
dependent solely on symmetries of the ordered phase.
Postprocessing of simulation results was used to

identify specific mechanisms of pattern ordering.
New mechanisms and insight into past observa-
tions of hexagonal phase ordering were found, show-
ing that the dynamic path to increased hexagonal
ordering, and pattern quality, is complex. Simulated

Figure 5. Evolution of an inverse hexagonal simulation (Metropolis dynamics) subdomain where grains A/B exhibit the
zipping-up mechanism and grains C/D entrained ripening: (a) t = 6 � 103, the initial configuration with grain A sharing a
boundary with B and grain D entrained in C, (b) t = 5 � 104, both grains B and D shrink through the zipping-up mechanism,
where oppositely charged dislocations within a GB dislocation loop annihilate, and (c) t = 1 � 105, grains A and C have fully
absorbed grains B and D, respectively.

Figure 6. Evolution of hexagonal subdomain evolution (Metropolis dynamics) showing two additional examples of the edge
ripeningmechanism: (a) t = 20 the initial configuration with grains A and C sharing GBs with grains B and D, (b) t = 35, grain A
begins to absorb grain B following the annihilation of a disclination quadrupole in their shared GB and grain C begins to
absorb grain D through the zipping up mechanism, (c) t = 150, grain A has fully absorbed grain B while grain C continues to
absorb grain D.

TABLE 2. Material Parameters

variable value description

T 650 K temperature
a 5 Å lattice spacing
J0 1.80 � 10�21 J isotropic potential
h �1.25 � 10�19 J binding energy
ra 2.24 nm attraction length scale
rr 5 nm repulsion length scale
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hexagonal grain interactions revealed that pair interac-
tions of grains, with nonparticipating neighboring
grains, are the dominant mode of hexagonal grain
growth and increasing pattern quality. This computa-
tional approach and results motivate the future use of

optimal control techniques to determine operating
parameters (e.g., temperature, coverage, adsorption
rate) for the development of nanomanufacturing pro-
cesses of high-quality bimetallic patterned surfaces for
catalytic and other applications.

METHODS
Heteroepitaxy Model. The prototype experimental system for

which the mesoscopic diffusion model was initially proposed is
Pb/Cu(111) heteroepitaxial pattern formation.5,20,26,27 Past work
has modeled this material system using an interacting particle
(IP) mesoscopic diffusion model13,19 with particle/particle inter-
actions consisting of short-range attractive and long-range
repulsive Gaussian components:

J(r) ¼ � J0 e� r
rað Þ2 � χe� r

rrð Þ2
� �

(3)

where J0 is the strength of the isotropic potential, χ is the
repulsion strength parameter [0,1], and ra/rr is the attractive/
repulsive length scale. The free energy for the mesoscopic
model was introduced in refs 13 and 15:

E[c] ¼ 1
2

Z
U(r)c(r)drþ 1

β

Z
[cln cþ (1 � c)ln(1 � c)]dr (4)

where c(t,x,y) is the local particle coverage field ranging from
0f 1, β= (kBT)

�1,U(t,x,y) = J(cþ h) is the interaction energy, and
h is an external field term. The free energy eq 4 is composed of
energetic (term 1) and entropic (term 2) contributions. This free
energy equation enables the mesoscopic model to be formu-
lated in the familiar Cahn�Hilliard form for a constrained/
conserved order parameter:

Dc
Dt

¼ �r 3 � μ[c]r δE[c]
δc

� �� �
(5)

The mobility term μ[c] is μ[c] = De�U0βc(1� c) (Metropolis) and
μ[c] = De�U0βc(1 � c) (Arrhenius), where U0 = c0

R
rJ(r)dr þ h is a

constant. Both Metropolis and Arrhenius diffusion dynamics
take into account the energy difference between states. Upon
coarse-graining of the microscopic model, Arrhenius dynamics
results in a coverage dependent energy barrier to diffusion
whereas Metropolis does not. As with the interaction potential
(eq 3), the diffusion coefficient is directly related to parameters
of the underlying microscopic model, D = (1/4)Γa2, where Γ is
the transition probability rate, a is the microscopic lattice
constant, and the factor of 1/4 is determined by the underlying
lattice.

Simulation Conditions. The numerical methods used are de-
tailed in ref 16. In summary, the Fourier spectral method was
used for spatial discretization, and an implicit variable-order
backward differencing time-intregation method was used with
an underlying Newton�Krylov nonlinear solver (SUNDIALS, see
ref 28). This novel numerical approach enables stable long-time
integration and access to large length scales required for this
study. The simulation domain was a square with dimension of
1 μm2. A uniformly discretized grid of 11542 nodeswas usedwith
periodic boundary conditions imposed by the Fourier spectral
method. Simulation times are reported in dimensionless units
τ = 4/Γ. Simulation parameters are given in Table 2 where
temperature for each simulation was determined using a fixed
dimensionless interaction strength βJ0c0(1� c0) = 0.0455, below
the critical interaction strength required for pattern formation
with χ = 0.5.19

Initial conditions representative of the unstable disordered
phase were used of the form:

cij(t ¼ 0) ¼ c0 þNij(μ, σ
2) (6)

where c0
hex = 0.35 ML and N is a normally distributed random

variable on the interval [�0.1,0.1] with mean μ = 0 and variance
σ2 = 0.01. These initial conditions were used for the hexagonal
phase simulations. Initial conditions for inverse hexagonal phase
simulations employed a continuation method where early
(t = 1) partially formed hexagonal phase domains cij

hex were
used as initial conditions after renormalization to c0

inv = 0.75 ML:

cij(t ¼ 0) ¼ chexij þ Δc

1 � chex0

(1 � chexij ) (7)

where Δc = cij
inv � cij

hex.
Phase-Order Characterization. Quantification of hexagonal and

inverse hexagonal domain order was approximated using bond-
orientational order (BOO) concepts.21 This approach has been
used for other systems exhibiting two-dimensional hexagonal
ordering, spherical block copolymer thin film self-assembly.18,22

Each simulation snapshot was digitized to identify indivi-
dual pattern features using the magnitude of the gradient |3c|
with a threshold of the spatially averaged mean value. The
centers-of-mass of the objects in the resulting digitized image
were then used as discrete points associated with each hex-
agonal feature. Delaunay triangulation was then employed to
determine nearest neighbors and to construct an undirected
graph for BOO analysis. The resulting undirected graph was
used to determine the local orientational order parameter:17

Ψn ¼ 1
N∑N

exp(niφ) (8)

where n = 6 for hexagonal and inverse hexagonal order and N is
the number of local nearest neighbors. Candidate disclination
defects were identified by nodeswith 5 (þ) and 7 (�) neighbors.
Dislocations were then identified as pairs of neighboring plus
and minus disclinations through computing the maximum
matching29 of the undirected graph. Remaining unpaired dis-
clinations were then counted as “free”.
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